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Abstract: Nuclear medicine investigations play a significant role in diagnosing dementia, mainly
using imaging techniques such as positron emission tomography (PET) and single-photon emission
computed tomography (SPECT). By providing functional and molecular data via brain imaging,
nuclear medicine investigations offer valuable insights that complement clinical evaluations and
structural imaging in the early detection, diagnosis, and differentiation of various types of dementia,
leading to more accurate diagnosis and personalized treatment planning. Therefore, the Nuclear
Medicine Society of Thailand, the Neurological Society of Thailand, and the Thai Medical Physicist
Society have collaborated to establish these practical nuclear medicine investigation guidelines aiming
to (1) identify the role of nuclear medicine studies in patients with neurocognitive disorders; (2) assist
referrers in requesting the most appropriate procedure for diagnosis of each type of neurocognitive
disorders; and (3) identify scientific evidence that is useful to assisting nuclear medicine profes-
sionals in recommending, performing, interpreting, and reporting the results of nuclear medicine
investigations in patients with neurocognitive disorders.
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1. Introduction

Dementia is a syndrome of cognitive decline in different domains. Regarding the
etiologies, neurodegenerative brain disease is the most common cause of dementia in the
elderly, followed by cerebrovascular diseases. The clinical diagnosis of neurodegenerative
brain disease causing dementia is based on clinical criteria [1]. Various neurodegenerative
diseases causing dementia have been defined by their clinical syndromes and neuropatho-
logical findings, such as Alzheimer’s disease, dementia with Lewy bodies, frontotemporal
lobar degeneration, and their variants. The definite diagnosis of neurodegenerative brain
disease needs the findings of pathological protein accumulation and neuronal degeneration
within the brain parenchyma. Each disease has a specific pattern of brain atrophy and type
of accumulated protein, which is revealed during an autopsy [2–4]. Nonetheless, obtaining
brain tissue for diagnosis is impractical due to its invasiveness.

Previously, brain imaging in dementia, including computed tomography (CT) and
magnetic resonance imaging (MRI), was used to rule out reversible causes of dementia,
such as cerebrovascular disease, hydrocephalus, tumors, etc. Although modern high-
resolution MRI can precisely demarcate gray matter, white matter, and other non-brain
parenchymal structures, leading to the detection of gray and white matter change patterns
in individuals with neurodegenerative brain disease, molecular imaging such as single-
photon emission computed tomography (SPECT) and positron emission tomography (PET)
further allow indirect observation of the pattern of functional brain decline or pathological
protein accumulation, which are more specific to the disease. The overlaps among clinical
syndromes, pathological protein accumulation, and genetic risk are the challenges of
dementia diagnosis. Thus, various imaging techniques have been added to diagnostic
criteria to improve dementia care in clinical and dementia research [5–8].

Since the number of dementia patients in Thailand is increasing along with the aging
society, there are rising demands for dementia investigations. (In Thailand, accessibility
to MRI, SPECT, and PET is still limited, and the cost of these imaging studies is high.
Therefore, it is necessary to have guidelines for choosing the most appropriate diagnostic
techniques for an individual patient). These guidelines aim to assist clinicians and nuclear
medicine specialists in diagnosing, choosing appropriate nuclear medicine investigations,
performing image acquisition, interpreting images, and being aware of potential pitfalls in
using SPECT and PET in neurocognitive disorders.

2. Definitions

Dementia is a syndrome of insidious cognitive decline in one or more domains that
is significant from the previous level of cognition. The decline must be severe enough to
interfere with occupational, social, or daily life functions. According to the fifth version of
the Diagnostic and Statistical Manual of Mental Disorders version 5 (DSM5), revised by the
American Psychiatric Association (APA) in 2013 [9], the term major neurocognitive disorder
is used as an alternative name for dementia. Mild cognitive impairment (MCI) is also a
syndrome of cognitive decline with less severity that does not interfere with occupational,
social, or daily life functions. MCI was introduced in order to define the pre-symptomatic
dementia [10]. Mild neurocognitive disorder is an alternative term for MCI according
to DSM5.

Moreover, MCI has been declared as a disease. In addition, the cognitive domains have
been revised and renamed as complex attention, executive function, learning and memory,
language, perceptual-motor, and social cognition [9,11]. The causes of dementia can result
from various diseases. Each type of dementia has a specific clinical syndrome, diagnostic
criteria, brain pathologic findings, and structural and functional change patterns. This
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information must be assessed before choosing the appropriate investigations. These guide-
lines discuss the main roles of molecular imaging (SPECT and PET) in assisting in clinical
diagnosis and management of neurocognitive disorders associated with neurodegenerative
diseases (Table 1).

Table 1. Common types of dementia related to neurodegenerative diseases.

Alzheimer’s disease (AD)

Alzheimer’s disease (AD) variants Posterior cortical atrophy (PCA)
Logopenic aphasia (PCA)
Frontal variant AD (fvAD)
Corticobasal syndrome (CBS) variant AD
Familial AD

Non AD dementia
Lewy body dementia (LBD)

- Dementia with Lewy bodies (DLB)

- Parkinson’s disease dementia (PDD)

Frontotemporal lobar degeneration (FTLD)

- Behavioral variant FTLD (bvFTLD)
- Primary progressive non-fluent aphasia (PNFA)
- Semantic dementia (SD)

Vascular dementia (VaD)

3. Objectives

1. To identify the role of nuclear medicine studies in patients with neurocognitive
disorders.

2. To assist referrers in requesting the most appropriate procedure for the diagnosis of
each type of neurocognitive disorder.

3. To identify scientific evidence that is useful in assisting nuclear medicine professionals
in recommending, performing, interpreting, and reporting the results of nuclear
medicine investigations in patients with neurocognitive disorders.

4. Guideline Development and Recommended Flow of Nuclear Medicine Investigations
of Dementia Syndrome

The panelists for this guideline development are nuclear medicine specialists who
are representatives from Nuclear Medicine Society of Thailand (S.T., T.K., B.Kh., W.C.,
T.T., N.W., Ch.C., and P.K.), medical physicists/technologists from Thai Medical Physicist
Society (P.P., T.S., N.P, and S.A.), and neurologists from The Neurological Society of Thailand
and Dementia Association of Thailand (Y.L. and V.S.). The guideline development process
is shown in Scheme 1.

The flow of imaging investigation in dementia syndrome is shown in Scheme 2, and
the summarized implications of nuclear medicine investigations in dementia syndrome
with the level of evidence are listed below in Table 2 [12–34].

Table 2. Indications for PET and SPECT in dementia syndrome.

Investigations Implication for Clinical Practice Level of Evidence

To predict AD dementia conversion

FDG PET ++ I [12,13]

Brain perfusion SPECT + I [13]

Amyloid PET ++ I [14–16]

Tau PET (use with amyloid PET) + I [15]

To support early-onset Alzheimer’s disease (EOAD) diagnosis
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Table 2. Cont.

Investigations Implication for Clinical Practice Level of Evidence

FDG PET ++ I [17–19]

Brain perfusion SPECT + II [20,21]

Amyloid PET ++ I [17,22–25]

Tau PET + I [25]
II [26–30]

To differential diagnosis of AD variants

FDG PET ++ I [17,19]

Brain perfusion SPECT + II [20,21]

Amyloid PET ++ I [17,22–24]

Tau PET +/− II [27–30]

To differential diagnosis of AD vs. non-AD dementia

FDG PET ++ I [17,22,23,29]

Brain perfusion SPECT + II [31,32]

Amyloid PET ++ I [18,19,28,30]

Tau PET + III [20,21,24,27]

To differential diagnosis of LBD vs. non-LBD

FDG PET ++ I [33]

Brain perfusion SPECT + I [33]
II [34]

DAT SPECT ++ II [12,35]

MIBG scan ++ II [12]

Tau PET (differentiate DLB and
PCA) ++ II [12]

Note: ++ clinically useful investigation; + possibly useful investigation; +/− investigational;. Levels of evidence:
Level I: High-quality prospective cohort study with adequate power or systematic review of these studies; Level
II: Lesser quality prospective cohort, retrospective cohort study, untreated controls from an RCT, or systematic
review of these studies; Level III: Case–control study or systematic review of these studies; Level IV: Case series;
Level V: Expert opinion; case report or clinical example; or evidence based on physiology, bench research, or “first
principles”.
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Scheme 2. The flow of nuclear medicine investigations in dementia syndrome. MRI = Mag-
netic resonance imaging; CT = Computed tomography; SPECT = Single-photon emission com-
puted tomography; FDG PET = 18F-Fluorodeoxyglucose positron emission tomography; FDOPA
PET = 18F-Fluoro-L-dopa positron emission tomography; AD = Alzheimer’s disease; DLB = Dementia
with Lewy bodies; PDD = Parkinson’s disease dementia; A = Amyloid; T = Tau; N = Neurodegenera-
tion. Note: * = CT is optional if MRI is not available.

Relative contraindications for nuclear medicine investigations are pregnancy/breastfee
ding and the patients who are unable to cooperate.

5. Nuclear Medicine Imaging Procedures
5.1. Patient Preparation

The patient preparation for nuclear medicine investigations in dementia syndrome is
shown in Table 3 [36–40].

Table 3. Patient preparation for brain perfusion SPECT and brain PET.

Brain perfusion SPECT

1. Review clinical history, physical examination, and anatomical images.
2. Advise the patient to avoid stimulants affecting cerebral blood flow:

a. Caffeine, cola, alcohol, and energy drinks;
b. Smoking.
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Table 3. Cont.

FDG PET

1. Review clinical history, physical examination, and anatomical images.
2. Fast for at least 4 h.
3. Advise the patient to stop taking brain stimulants and drugs, as follows:

a. Caffeine, cola, alcohol, and energy drinks;
b. Smoking and excessive exercise;
c. Stop takin these drugs for 4–6 half-lives: cocaine, anesthetics (propofol,

isoflurane, barbiturates), benzodiazepine, corticosteroids, anti-psychotics
(haloperidol, chlorpromazine), and cholinesterase inhibitors (donepezil,
rivastigmine).

4. On the acquisition day, blood glucose must be checked, and the optimal blood glucose
level should not exceed 160 mg/dL. If blood glucose exceeds 200 mg/dL,
rescheduling should be considered. Good hydration is advised.

5. During the FDG injection and uptake period, place the patient in a quiet, dimly lit
room with eyes open and ears unplugged.

6. Sedation can be used if needed with short-acting benzodiazepines, such as
midazolam, just before image acquisition.

7. Continuously monitor vital signs and pulse oximetry during acquisition.

Amyloid and Tau PET imaging
1. Review clinical history, physical examination, and anatomical images
2. No drug is advised to be withdrawn.
3. Fasting is advised for at least 4 h to prepare for sedation if needed.

5.2. Recommended Radiopharmaceutical Dosage

The recommended radiopharmaceutical dosage is shown in Table 4 [36–44].

Table 4. Radiopharmaceutical dosage.

Radiopharmaceuticals Dose

99mTc HMPAO
555–1110 MBq (15–30 mCi)
Typical: 740 MBq (20 mCi)

99mTc ECD
555–1110 MBq (15–30 mCi)
Typical: 1110 MBq (30 mCi)

18F-FDG 185–740 MBq (5–20 mCi)

Amyloid imaging

- 18F-Florbetapir 370 MBq (10 mCi)

- 18F-Flutemetamol 185 MBq (5 mCi)

- 18F-Florbetaben 300 MBq (8 mCi)

- 11C-PiB 300–370 MBq (8–10 mCi)

Tau tracer

- 18F-PI2620 185–300 MBq (5–8 mCi)

- 18F-AV1451 370 MBq (10 mCi)

Variability in injected dose recommendation is based on differences in absorbed dose

5.3. Radiation Dosimetry

Radiation dosimetry in SPECT [36,37] and PET studies [39,41–46] is shown in Tables 5 and 6,
respectively.
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Table 5. Radiation dosimetry in SPECT studies.

Agent Dose in MBq Unit
(mCi)

Organ Receiving the Highest Dose
mGy/MBq

Effective Dose
mSv/MBq

99mTc HMPAO
555–1110
(15–30)

0.034
(kidney) 0.0093 mSv

99mTc ECD
555–1110
(15–30)

0.05
(bladder wall) 0.0077

Table 6. Radiation dosimetry in PET/CT studies in adults.

Agent Dose in MBq Unit
(mCi)

Organ Receiving the Highest Dose
mGy/MBq

Effective Dose
mSv/MBq

18F-FDG
185–740
(5–20)

0.13
(bladder wall) 0.019

18F-Florbetapir 370 MBq (10 mCi) 0.143
(gallbladder wall) 0.019

18F-Flutemetamol 185 MBq (5 mCi) 0.287
(gallbladder wall) 0.034

18F-Florbetaben 300 MBq (8 mCi) 0.137
(gallbladder wall) 0.019

11C-PiB 300 MBq (8 mCi) 44.80 ± 29.30
(gallbladder wall) 5.3

18F-PI2620 185–300 MBq N/A N/A
18F-AV1451 370 MBq N/A 0.024

N/A: Data not available.

5.4. Brain Perfusion SPECT Acquisition and Image Reconstruction Parameter

The brain perfusion SPECT and SPECT/CT acquisition and reconstruction parameters
are shown in Table 7 [37,47].

Table 7. SPECT and SPECT/CT acquisition and reconstruction parameters.

Agent Waiting Time after Injection Acquisition Time (min)

99mTc ECD
15 min–6 h
(optimum at 45 min) 30

99mTc HMPAO
30 min–6 h
(optimum at 90 min) 30

Instrument SPECT
Collimator Fan beam or parallel hole (LEHR/LEUHR) *
Energy setting 140 keV, 15–20% energy window
Zoom To gain at least a pixel size equal to 1/3 to 1/2 of the expected resolution
Nuclide 99mTc
Matrix Size ≥128 × 128
Scan mode Step and shoot or continuous
Rotation per view ≤3◦ (total of 360◦ rotation)
Time per view About 15–30 s/projection (total count 5 × 106 counts)
Scatter correction Optional
Reconstruction 3D-OSEM **/FBP
Slice thickness Possible 3–5 mm (for maximal pixel resolution)

(if SPECT/CT) Scout/Surview/Topogram CT (optional in some vendors)
CT voltage 120–140 kV
CT current ≤30 mA
(if SPECT/CT) CT (for attenuation correction)
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Table 7. Cont.

Agent Waiting Time after Injection Acquisition Time (min)

(if SPECT/CT) CT (for attenuation correction)
CT voltage 120–140 kV
CT current ≤80 mA
Slice thickness 3–5 mm

Acquisition steps for an individual patient

- Lie supine with arms down on the machine table.
- Immobilize the head to reduce movement.
- Center the head in the field of view.
- Hold the head straight without tilting in the canthomeatal line perpendicular to the detector.
- Use the smallest radius of rotation as much as possible or use an automated contour setting from the patient to the detector to

ensure maximal image resolution.

SPECT processing

- Review of projection data in cine mode and sonogram for an initial determination of image quality, patient motion, and
artifacts.

- Reconstruct by ordered subset expectation maximization (OSEM) or filtered back projection (FBP) algorithm.
- Select the type of low pass filter, i.e., Butterworth, Hamming or Hanning.
- Optimize reconstructing parameters, i.e., cut-off, order, iterations, and subset, depending on the injected activity, resolution,

and camera sensitivity.
- Use either calculated (e.g., Chang’s method) or measured (e.g., Gadolinium source or CT scan) attenuation for attenuation

correction.
- Apply scatter correction (optional) to improve image signal-to-noise ratio. The most popular one is triple-energy-window

correction.
* Low-energy high resolution (LEHR) or low-energy ultra high resolution (LEUHR); ** Ordered subsets expectation
maximization (OSEM) or filtered back projection (FBP); SPECT = Single-photon emission computed tomography;
CT = Computed tomography; AC = Attenuation correction; keV = Kiloelectronvolt; sec = Second; mm = Millimeter;
kV = Kilovolt; mA = Milliampere.

5.5. PET Acquisition and Image Reconstruction Parameter

The brain PET acquisition and reconstruction parameters are shown in Table 8
[38–40,48,49].

Table 8. PET/CT acquisition and reconstruction parameters.

Scout or Surview CT

CT voltage 120 kV
CT current ≤30 mA

CT

Scan type Helical
Rotation time 0.75–1 s
Matrix 512
Slice thickness (mm) 3–5 mm
Slice increments continuous
Pitch ≤1
CT voltage 120–140 kV
CT current.time ≤50 mAs (Low dose CT), ≤250 mAs (diagnostic CT)

PET

Energy setting 511 keV, 15–20% energy window

Glucose metabolic radiopharmaceutical and dose 18F-Fluorodeoxyglucose (FDG) 185–740 MBq (5–20 mCi)

Amyloid radiopharmaceutical and dose

18F-Florbetapir 370 MBq (10 mCi)
18F-Flutemetamol 185 MBq (5 mCi)
18F-Florbetaben 300 MBq (8 mCi)
11C-PiB 300 MBq (8 mCi)
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Table 8. Cont.

Scout or Surview CT

Tau radiopharmaceutical and dose
18F-PI-2620 185–300 MBq (5–8 mCi)
18F-AV1451 370 MBq (10 mCi)

Uptake time

18F-FDG 30–60 min
18F-Florbetapir 30–50 min
18F-Flutemetamol 60–120 min
18F-Florbetaben 45–130 min
11C-PiB 40–70 min
18F-PI2620 30–75 min
18F-AV1451 80 min

Mode 3D

Scan direction Toward head

Scan Duration (min/bed) 18F-FDG 5–30 min
18F-Florbetapir 10 min
18F-Flutemetamol 10–20 min
18F-Florbetaben 15–20 min
11C-PiB 40–70 min
18F-PI2620 45 min (5 min per frame)
18F-AV1451 20 min

Attenuation correction Yes (use CT)

Scatter correction Yes

Reconstruction Iterative (OSEM)

Acquisition steps for an individual patient

- Lie supine with arms down on the machine table.
- Set the patient’s head in a holder in the center of the field of view with the canthomeatal line in the vertical position.
- Immobilize the head to reduce movement.

PET processing

- Preview images for patient motion and ensure PET and CT images are matched before performing CT attenuation correction.
- Images are reconstructed in the transaxial plane of 128 × 128 (for semiquantitative analysis) or preferably 256 × 256 matrix

size or more for better image resolution.
- Typical transaxial pixel size is 2–3 mm and slice thickness is 2–4 mm.
- A final image resolution may vary between 2.5 and 10 mm full-width at half maximum (FWHM), depending on the resolution

of the PET system.
- The reconstruction parameters can be varied. Please refer to the manufacturer’s recommendations for the best choices of

iterations, subsets, and smoothness.

PET = Positron emission tomography; CT = Computed tomography; AC = Attenuation correction;
keV = Kiloelectronvolt; sec = Second; mm = Millimeter; kV = Kilovolt; mA = Milliampere; min = Minute.

6. Imaging Data Display, Image Interpretation, and Reporting Format
6.1. Brain Perfusion SPECT and FDG PET
6.1.1. Imaging Data Display [45,50]

The display plane for SPECT and PET is the AC–PC plane (parallel to the line passing
from the anterior commissure to the posterior commissure, which is approximately the line
passing through the anterior and posterior poles of the brain in a sagittal image).

Resliced axial images are usually used for interpretation, while coronal and sagittal
images help to better delineate abnormal regions.

A continuous gray or color display scheme could be selected according to the reader’s
preference.

The surface projection technique with comparison to a normal age-matched database
by Z-score using three-dimensional stereotactic surface projections (3D-SSP) or Neurostat
further avoids misdiagnosis of dementia type made by visual analysis alone. It improves di-
agnostic confidence for brain perfusion SPECT and FDG-PET, especially in non-experienced
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readers [51,52]. Other programs, such as eZIS [53] that compare the patient’s data with or
without a normal database can also be used depending on the user’s preferences.

Three-dimensional stereotactic surface projection (3D-SSP) is software for neurological
image analysis, which compares a patient’s brain to an age-matched normal database voxel-
by-voxel with normalization of the count to the brain region that is usually not affected by
the disease process, e.g., thalamus, cerebellum, and pons. Global brain (whole gray matter)
for reference is optional.

The easy Z-score imaging system, or eZIS [53], combines statistical parametric map-
ping (SPM) and 3D-SSP. Instead of using a normal database for robust statistical imaging
analysis, eZIS can utilize SPM processing in normalization, smoothing, and image conver-
sion functions for statistical analysis. Furthermore, if a normal database is available, even
from different institutes or different cameras/SPECTs, it can also be used.

Examples of brain perfusion SPECT and brain FDG-PET image display for visual
analysis in Alzheimer’s disease are demonstrated in Figures 1 and 2, respectively.
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Figure 2. Brain FDG-PET in Alzheimer’s disease displayed in the axial AC–PC plane. Hy-
pometabolism at posterior cingulate gyri, precunei, bilateral parietal and temporal cortices (yellow
arrows), with relatively preserved metabolism at bilateral primary sensorimotor areas, visual cortices,
basal ganglia, thalami, and cerebelli are observed. (Black shows higher metabolism and gray to white
show lower metabolism).

6.1.2. Image Interpretation for Brain Perfusion SPECT and FDG-PET

Since brain perfusion tracers, e.g., 99mTc ECD and brain glucose metabolism PET
radiopharmaceutical (18F-FDG), are taken up by neuronal cells, depending on synaptic
activity [54–56], their uptake thus also represents areas of viable cells. Dementia, which has
synaptic dysfunction and neuronal death, can be imaged with these two types of imaging.
Areas of hypoperfusion/hypometabolism are the areas to look for in dementia. Each type
of dementia shows specific patterns of hypoperfusion/hypometabolism in the cortex, as
shown in Table 9 [57–63].

Using 3D-SSP, the hypometabolic regions affected in each type of dementia are more
evident, as shown in Figure 3.
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Table 9. Specific hypoperfusion/hypometabolic patterns in each type of dementia.

Dementia Type Hypoperfusion/Metabolic Cortical and Subcortical
Regions

Preservation of
Perfusion/Metabolism

Alzheimer’s disease (AD)

- Posterior cingulate gyri, precunei, parietal lobes, and
superior/posterior temporal lobes (can be
asymmetric)

- Frontal lobes in advanced cases AD variants (more
predominate in hypoperfusion/hypometabolic region)

- Frontal variant (fvAD): orbitofrontal, medial
frontal

- Logopenic variant primary progressive aphasia
(lvPPA): left temporoparietal predominate,
extending toward more anterior temporal cortex

- Posterior cortical atrophy (PCA): bilateral
parieto-occipital lobes (usually right
predominate) ± frontal eye field

- Primary sensory-motor
cortices

- Primary visual cortices
- Basal ganglia, thalami

Dementia with Lewy bodies
(DLB)

- Similar findings to AD plus primary visual cortex
- Posterior cingulate gyri

(relatively preserved cingulate
island sign)

Frontotemporal lobar
degeneration (FTLD)

- Frontal and anterior temporal lobes
- FTLD variants (more predominate in

hyperperfusion/hypometabolic region):

- Behavioral variant (bvFTD): medial prefrontal
- Semantic (SD): anterior temporal lobes
- Progressive non-fluent aphasia (PNFA):

pre-Rolandic left lateral and medial frontal

- Posterior cingulate

Vascular dementia - Various locations in cortical and subcortical gray
matter and cerebellum

Note: Correlation with anatomical imaging for interpretation is recommended.
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bvFTLD = behavioral variant FTD, nfvPPA = non-fluent variant primary progressive aphasia,
lvPPA = logopenic variant primary progressive aphasia, svPPA = semantic variant primary progres-
sive aphasia, DLB = dementia with Lewy bodies. Color shows the specific hypometabolic brain
region in each type of dementia.

6.1.3. Reporting Format

Each report must include specific details, such as the patient’s identification, the
referring clinician, the date and time of the study, and the reporting physician’s signature
for quality assurance purposes. The reporting physician must ensure these details are
accurately matched with the main content of the report. The suggested structure for reports
on brain SPECT and brain PET [36,37,45,64,65] consists of four key sections.

- History: The relevant history should be noted along with an indication of the study, for
example, clinical cognitive impairment and other related disorders, type of suspected
dementia, duration of symptom, recent medication, and findings of other related
studies (e.g., neuropsychological test, CT, and MRI).

- Techniques:

1. Radiopharmaceutical type and dosage.
2. Uptake time: after tracer injection to image acquisition.
3. Describe imaging and processing techniques, including imaging quality and

limitations. These should also be thoroughly detailed if specific software or
anatomical co-registration methods are used.

4. Ancillary drugs (if used), e.g., type and time of sedative drugs.
5. Fasting duration and serum glucose level for FDG PET.
6. Type of additional software, e.g., 3D-SSP and normal age range and ethnicity,

used for analysis.

- Findings:

a. SPECT or PET hypoperfusion/hypometabolic regions should be mentioned. Its
location, extension, and severity should be reported.

b. Semiquantitative results (if done) e.g., Z-score comparison, can be described.
c. Correlative imaging findings, if available, e.g., MRI and CT, should be men-

tioned

- Interpretations/Impressions/Conclusions: Conclude whether the hypoperfusion/hyp
ometabolic pattern found matches with the type of dementia. The final impression
from imaging data should be interpreted along with available clinical and correlative
imaging data. If they seem discordant, direct discussion with the multidisciplinary
team would be the best (if possible) or provide further recommendations.

6.2. Brain Amyloid PET
6.2.1. Imaging Data Display [39]

The pixel size of at least 16-bit pixels.
Imaging plane: The alignment for displaying the tomographic images is the AC–PC

line. The transaxial images are mainly used for image interpretation. However, coronal
and sagittal images are also helpful in differentiating the distribution of the radiotracer
in gray matter from subcortical white matter and confirming that the entire brain has
been reviewed.

The color scale should be specific for the radiopharmaceutical used, as follows:

Gray scale: 18F-florbetaben
Color (Rainbow): 11C-PiB, 18F-flutemetamol and 18F-NAV4694
Reverse gray scale: 18F-florbetapir
Maximum intensity of the display scale
18F-florbetapir: the brightest region of overall brain uptake
18F-florbetaben: the white matter maximum
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18F-flutemetamol: setting the scale intensity in the pons region to 90%

6.2.2. Image Interpretation for Brain Amyloid PET
Visual Analysis [39,66–68]

There are different criteria for interpreting amyloid PET images among radiotracers,
and interpreters should know the recommendations specific to a given amyloid tracer
(Table 10). However, there are fundamental principles that can be applied. A systematic
review of transaxial amyloid PET images starts at the cerebellar level. Usually, the cerebellar
cortices are free from beta-amyloid deposition. Therefore, this level references normal
cortical activity and gray–white matter contrast. After that, it is recommended to scroll up
to review the entire cerebral cortical and subcortical regions with particular attention to
the frontal, lateral temporal, posterior cingulate/precuneus, parietal cortices, and the basal
ganglia. The visual analysis comprises a binary interpretation as a positive or negative scan.

Table 10. The recommended color scale and criteria for a positive scan use visual and semiquantitative
analysis with the standardized uptake value ratio (SUVR) for each radiopharmaceutical to assess
beta-amyloid deposition.

Radiopharmaceuticals Color Scale Criteria For Positive
Scan Cortical Region SUVR Cut-Off for

Positive Scan Reference Region

11C-PiB Color (Rainbow) Binding in GM > WM N/A 1.4–1.6 Cerebellar cortex

18F-florbetapir Black/white
(Reverse gray)

Loss of GM/WM
contrast > 1 region

Temporal > occipital
> prefrontal >
parietal

1.1–1.34 Whole cerebellum

18F-flutemetamol Color (Rainbow)

Increased GM uptake
or loss of GM/WM
contrast > 4 cortical
and 1 subcortical
regions

Frontal > posterior
cingulate/precuneus
> insula > temporal >
striatum

0.58–0.62 Pons

18F-florbetaben Black/white
(Gray)

Increased GM uptake
extending to the
cortical margin > 4
cortical regions

Lateral temporal >
frontal > posterior
cingulate > parietal

1.43 Cerebellar cortex

18F-NAV4694 Color (Rainbow) N/A * N/A * 1.4–1.5 Cerebellar cortex

* N/A = not available (but similar criteria as in 11C-PiB are assumed); Apart from visual and quantification
analyses, as previously mentioned, there are several ongoing studies on using artificial intelligence (AI), which is
beyond the scope of the current guidelines.

Negative Scan

Normal distribution for beta-amyloid radiopharmaceuticals is predominantly in the
white matter with no or little retention in the gray matter. With the clear distinction of
radiotracer uptake between gray and white matter, there is a nicely seen contrast between
grey and white matter. In 11C-PiB, some radiotracer uptake within the cerebral cortices
can be expected but not exceed that in the adjacent white matter. The mechanism of white
matter uptake is considered non-specific and varies among radiotracers. The negative
uptake pattern resembles a blueprint of white matter distribution, i.e., a white matter sulcal
pattern, with numerous concave arboreal ramifications. There should be a clear, wide,
irregular gap between the cerebral hemispheres. Example images of negative scans are
shown in Figure 4.
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Quantification 
Quantification analysis to obtain numeric data of amyloid PET images can support vis-

ual analysis objectively, assess temporal change, and compare individual PET results with 
those of the normal control population. Absolute quantitative measurements of amyloid 
tracer deposition using a dynamic PET imaging protocol and tracer kinetic analysis are 
not required clinically but may be used for research. However, some semiquantitative an-
alytical methods, namely the SUVR, Centiloid scale, and 3D-SSP, can be performed using 
available computer-aided analysis software for the clinic. 
a. Standardized uptake value ratio (SUVR) 

The SUVR is a semiquantitative analysis determined by the ratio between the SUV of 
the cortical region of interest divided by the SUV of the specific reference region recom-
mended for each radiopharmaceutical. Several cortical brain regions are used to assess the 
SUVR: the global cerebral cortex, frontal, temporal, parietal, precuneus, anterior/posterior 

Figure 4. Example images of negative scans for beta-amyloid deposition acquired from (A) 11C-PiB
and (B) 18F-florbetapir.

Positive Scan

A positive scan is defined as increased retention of tracer radiopharmaceutical uptake
in the cerebral cortices, with the same or higher intensity as compared to the uptake in the
white matter, and it forms a smooth, regular boundary. The typical brain regions involved
are the frontal cortex, medial and lateral posterior parietal cortices, precuneus, occipital
cortex, lateral temporal cortices, and striatum (most notably at the caudate head). By
contrast, the sensorimotor and visual cortex can be relatively preserved. A typical finding
in a positive 11C-PiB scan is the intense retention in the cerebral cortices (cortical ribbon),
which is higher than in the white matter. This finding is less often seen in 18F-labeled
radiopharmaceuticals, which is generally considered a positive scan when loss of the
normal white matter pattern or loss of the gray matter and white matter contrast. Example
images of negative scans are shown in Figure 5. However, there are differences in details
regarding the criteria used to define amyloid positivity among radiopharmaceuticals. The
brief criteria for brain amyloid positivity for each radiopharmaceutical are summarized in
Table 10.
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Please note that positive amyloid PET can be found in other conditions apart from
Alzheimer’s disease, including dementia with Lewy bodies (DLB), Parkinson’s disease
dementia (PDD), and cerebral amyloid angiopathy (CAA). In the elderly population with
normal cognition, the incidence of amyloid positivity also increases with age [69,70].

In some complex cases, the available CT or fused PET/CT images or coregistration
of PET and MRI images can provide helpful information on localization (gray vs. white
matter) of radiotracer uptake. Structural MRI also potentially contributes to the differential
diagnosis of dementia type, both in amyloid PET positive and negative cases [71,72].

Quantification

Quantification analysis to obtain numeric data of amyloid PET images can support
visual analysis objectively, assess temporal change, and compare individual PET results
with those of the normal control population. Absolute quantitative measurements of
amyloid tracer deposition using a dynamic PET imaging protocol and tracer kinetic analysis
are not required clinically but may be used for research. However, some semiquantitative
analytical methods, namely the SUVR, Centiloid scale, and 3D-SSP, can be performed using
available computer-aided analysis software for the clinic.

a. Standardized uptake value ratio (SUVR)

The SUVR is a semiquantitative analysis determined by the ratio between the SUV of
the cortical region of interest divided by the SUV of the specific reference region recom-
mended for each radiopharmaceutical. Several cortical brain regions are used to assess the
SUVR: the global cerebral cortex, frontal, temporal, parietal, precuneus, anterior/posterior
cingulate, and composite region, which combines several regional cortices. The brain re-
gions suggested as reference regions are known to be spared from beta-amyloid deposition,
either cerebellum (whole or cortex) or pons. However, the cut-off value of the SUVR for
amyloid positivity has yet to be agreed upon [68,73,74].

b. Centiloid scale (CL) [75–78]

The Centiloid scale was proposed to overcome the limitation of using different radio-
pharmaceuticals to assess beta-amyloid deposition across centers, which makes it difficult
for comparison purposes and in multicenter research trials. The concept of this quantifica-
tion method is to translate the SUVR in the same regions of the brain obtained from each
radiopharmaceutical into the common number, called the Centiloid, which ranges from 0 to
100, using the standard formula created from the previous research to assess the association
between regional SUV data from each radiopharmaceutical and reference radiopharma-
ceutical (11C-PiB). The average SUVR from cortical VOIs to be used for calculating the
CL value are the frontal combination (consisting of dorsolateral prefrontal, ventrolateral
prefrontal, and orbitofrontal regions), superior parietal, lateral temporal, lateral occipital,
anterior/posterior cingulate, and precuneus.

The example formulas for calculating the Centiloid value generated for each radio-
pharmaceutical are as follows. However, the formula may vary depending on the data and
the processing pipeline (e.g., SPM vs. PMOD vs. FSL Centiloid method) [78]. An example
of cortical VOIs of beta-amyloid PET images coregistered with MRI is shown in Figure 6.

(1) CLPiB = 93.7 × SUVR − 94.6
(2) CLflorbetapir = 175.43 × SUVR − 182.26
(3) CLflutemetamol = 119.53 × SUVR − 118.57
(4) CLflorbetaben = 153.4 × SUVR − 154.9
(5) CLNAV4694 = 85.32 × SUVR − 87.97

Recent data with 11C-PiB and 18F-florbetaben using brain autopsy results as a gold stan-
dard found that a CL value < 10 accurately suggested no neuritic plaque, a CL value > 20
suggested at least moderate plaque density, and a CL value of 50 or more best confirmed
both neuropathological and clinicopathological diagnosis of AD [79].
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Figure 6. Example of cortical VOIs (red) of beta-amyloid PET images co-registered with the MRI
template for assessing the composite SUVR with the whole cerebellum (yellow) as the reference region.
The SUVR will be used to calculate the Centiloid scale. Automatic calculation of the Centiloid scale
has recently been available in some software packages (courtesy of Assistant Professor Chakmeedaj
Sethanandha, Siriraj Hospital, Mahidol University).

c. Three-dimensional stereotactic surface projection (3D-SSP) [80,81]

The 3D-SSP technique is used for assessing the difference in radiotracer activity in
the brain in comparison with a normal database. The differences are displayed as Z-score
and Z-score map images (Figure 7). This technique has been widely used with many
radiopharmaceuticals, although the data in amyloid PET are still relatively limited [82,83].
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Figure 7. Examples of 3D-SSP Z-score map images from 18F-florbetapir PET scans in (A) normal
elderly with negative amyloid deposition and (B) patients with Alzheimer’s disease and positive
amyloid deposition. The 3D-SSP Z-score: Black represents negative amyloid deposition, progressively
increasing deposition from blue to red on the color bar.
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6.2.3. Reporting Format

Specific identification of each patient, the referring clinician, date and time of the
study, and the reporting physician’s signature must be provided in the report as part of
quality assurance. The responsibility of the reporting physician is to match this part to the
body of the report correctly. The recommended structural body of the report includes four
significant portions, as follows:

- History: The relevant history should be described along with an indication of the
study. The specific clinical symptoms of MCI or dementia and the reasons for the
test (e.g., atypical age of onset, uncertain clinical diagnoses, known comorbidities, or
potential candidate for clinical trial) should be briefly documented.

- Techniques:

1. Radiopharmaceutical type and dosage.
2. Injection to imaging interval of radiopharmaceutical.
3. Detailed imaging and processing techniques should be mentioned, including

imaging quality and limitations. If certain specific software or anatomical co-
registration is utilized, it should be additionally detailed.

4. Type of additional software used for quantification analysis, e.g., 3D-SSP, SPM,
PMOD, FreeSurfer, Hermes, MIMneuro, NeuroQ, or other commercially avail-
able or vendor-specific software

- Findings:

a. Visual analysis: The pattern of radiotracer distribution in the bilateral white
matter and cerebellum should be discussed. The gray–white matter contrast
should be mentioned, and the affected lobe with a loss of gray–white matter
contrast should be noted. Abnormal radiotracer uptake in the cerebral cortices
or cerebellar cortices, either the same degree and more intense than the white
matter uptake, if any, should be described. If present, the degree and location of
cerebral atrophy should also be mentioned.

b. Quantification analysis (optional): Describe the method used to obtain quantifi-
cation data (SUVR or Centiloid scale) and the results.

- Interpretations/Impressions/Conclusions: Negative/positive brain PET scan for beta-
amyloid deposition (absence/presence of significant beta-amyloid deposition in the
brain).

Note: Indeterminate or inconclusive results should be reported with possible reasons,
such as technical or physiological factors. The report should not state amyloid positivity as
the diagnostic of Alzheimer’s disease [39,66].

Evidence-based:
Previous data revealed comparable sensitivity and specificity among different radio-

pharmaceuticals in differentiating patients with Alzheimer’s disease from normal con-
trols [66,80,81]. The overall sensitivity and specificity of 18F-labeled amyloid tracers by
visual analysis (pooled sensitivity of 90% and specificity of 82–95%) and quantification
methods (pooled sensitivity of 90% and specificity of 83–94%) are also comparable. The
pooled sensitivity of PiB PET is slightly higher (96%) but with lower specificity (58%) [24].

The recently reviewed data from several studies on the clinical utility of amyloid PET
imaging in dementia disorders found that this technique is potentially proper on change
of diagnosis in 29%, gain of diagnostic confidence in 63%, change of medication in 38%,
and overall change of management in 64% of cases. The diagnostic confidence of referring
physicians also increased by approximately 20% with amyloid PET results [84]. The
management effect of amyloid PET in terms of change of diagnosis was also higher when
the scan was performed under AUC (62.4%) than when a non-AUC scan was performed
(45.2%) [85]. The impact of amyloid imaging on patient outcomes is still under investigation.
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6.3. Tau PET

Tau is a protein that has the role of stabilization in the microtubules in neurons, pre-
dominantly within axons. If abnormality occurs, tau protein is hyperphosphorylated,
which causes it to lose the function of binding to microtubules and then aggregate into
neurofibrillary tangles (NFTs), leading to loss of cell function and cell death [86]. Hyper-
phosphorylated tau has six isoforms, which can be divided into two functional groups
based on the number of repeated microtubule-binding domains [3R and 4R] [87].

Tauopathies are neurodegenerative disorders characterized by abnormal tau protein
deposition in the brain, resulting in clinical syndromes [88]. Primary tauopathies constitute
a significant class of frontotemporal lobar degeneration (FTLD) neuropathy and can have
several presentations, such as frontotemporal dementia (FTD) [i.e., behavioral variant
FTD, primary progressive aphasia], progressive supranuclear palsy (PSP), and corticobasal
degeneration (CBD). In Alzheimer’s disease (AD), the primary pathology includes neu-
rofibrillary tau neuropathy in addition to amyloid-beta (Aβ) and is considered a secondary
or non-primary tauopathy (Table 11) [89–91].

Table 11. Histopathological appearance of tau isoforms and conformation in different tauopathies.

Tauopathy Histopathology Tau IsoformElectron Microscope Light Microscope

Primary tauopathies
Progressive supranuclear palsy SF (and TF) Tufted astrocytes; globose tangles 4R
Corticobasal degeneration SF (and TF) Astrocytic plaques 4R

Argyrophilic grain disease SF Oligodendroglial coiled bodies;
limbic argyrophilic grains 4R

Pick’s disease TF (and SF) Pick’s bodies 3R
Myotonic dystrophy N/A Neurofibrillary tangles Short 0N3R

Secondary tauopathies
Alzheimer’s disease PHF (and SF) Neurofibrillary tangles 3R and 4R
Down syndrome PHF (and SF) Neurofibrillary tangles 3R and 4R
Chronic traumatic encephalopathy PHF (and SF) Neurofibrillary tangles 3R and 4R
Niemann-Pick disease type C PHF (and SF) Neurofibrillary tangles 3R and 4R

3R: three repeated; 4R: four repeated; PHF: paired helical filaments; SF: straight filaments; TF: twisted filaments;
N/A: data not available. Short 0N3R: the shortest isoform of fetal tau (where N denotes the number of N-terminal
inserts and R is the number of microtubule-binding domains).

In AD, neurofibrillary tangles (NFTs) are a key characteristic. The quantity of NFTs is
linked to the severity of AD, indicating a stronger association with neuronal dysfunction
compared to amyloid imaging. According to the Braak AD staging, NFTs initially appear
in the perirhinal and entorhinal cortex (stage I), then in the CA1 region of the hippocampus
(stage II). They subsequently accumulate in the limbic structures, including the hippocam-
pus (stage III) and the amygdala, thalamus, and claustrum (stage IV). In the advanced
stages, NFTs spread throughout the neocortex, with earlier and more severe impacts on
specific areas (stage V) before affecting the primary sensory, motor, and visual regions
(stage VI). Therefore, a tau pathology biomarker is a promising tool for diagnosing AD.
In contrast to Alzheimer’s disease, there is still limited data for tau accumulation in the
non-AD tauopathy group. However, some studies are showing that CBS patients have
higher uptake in the putamen, globus pallidus, and subthalamic nucleus [92], and PSP
patients also show significantly higher uptake in the subcortical brain region, especially in
the globus pallidus but not in the dorsal midbrain [93].

For tau imaging, there are several types of tau radiopharmaceuticals, e.g., quinolone
derivative (18F-THK 523, 18F-THK 5117, 18F-THK 5351), benzothiazole derivative (11C-
PBB3), and benzimidazole derivative (18F-AV1451) [94]. However, the first generation of
tau radiopharmaceuticals had high off-target binding to monoamine oxidase enzyme. Thus,
the second generation was developed. Among the second generation of tau radiopharma-
ceuticals, 18F-PI2620 has been used in Thailand. 18F-PI2620 has been proven to have a high
binding affinity to phosphorylated tau (both 3R and 4R isoforms) with absent off-target
binding in AD and non-AD tauopathies [46,95].
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6.3.1. Imaging Data Display

PET images are automatically co-registered with each individual, using an automatic
voxel of interest (VOI) based on the maximum probability following the automated anatom-
ical labeling (AAL)-merged atlas. PET images are then registered to the T1-MRI. The
standardized uptake value ratio (SUVR) of 18F-PI-2620 is analyzed for various brain re-
gions, using the cerebellar gray matter (excluding the vermis and anterior lobe surrounding
the vermis) as the reference region [48]. The processed images are displayed with the color
scale in the axial view along the anterior commissure—posterior commissure line (AC–PC
line), coronal view, and sagittal view.

6.3.2. Image Interpretation for Tau PET
Visual Analysis

The normal population has no specific area of 18F-PI-2620 cerebral uptake visually.
However, variable uptake of the skull may be generally seen. Suppose there is tau accumu-
lation in cortical regions, mainly at the temporal and parietal lobe, precuneus, and posterior
cingulate cortex. The study will be interpreted as positive, as shown in Figure 8 [46,48].
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2620 uptake at the inferior temporal, occipital, and parietal cortices and no off-target binding at the
basal ganglia.

Quantitative Analysis

Quantitation using the SUVR is still limited for 18F-PI-2620 due to the small number
of patients, unintended patient movement in later time frames, and small brain volume in
some regions. Thus, the SUVR should be interpreted along with visual analysis [48].

6.3.3. Reporting Format

- History: Indication, the patient’s clinical presentation, and correlative imaging.
- Techniques: Imaging is performed on an integrated 64-slice PET/CT scanner for the

whole brain, with non contrast-enhanced CT for attenuation correction and localization
in the transaxial, coronal, and sagittal planes. A 3D emission dynamic scan of the same
area is acquired in a one-bed positionSemiquantitative calculations are performed
using PMOD software with the automatic anatomical labeling (AAL)-merged atlas to
generate automatic voxels of interest for different brain regions.

- Findings: Visual analysis: Describe abnormal tau deposition in the brain region.
- Interpretations/Impressions/Conclusions: Negative/positive studies should be men-

tioned when reporting the region of abnormal tau deposition.
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Note: Imaging data should be interpreted along with available data from clinical
context and correlative imaging.

7. Pitfalls

Many biological and technical factors affect image interpretation, as shown in Ta-
ble 12 [38,40,47,96].

Table 12. Pitfalls and Errors.

Perfusion SPECT

Biological factors Technical factors

1. Unintended brain activity from external stimuli
2. Interference effect on cerebral blood flow, e.g., sedative drug
3. Anatomical variations

1. Misregistration artifact
2. Inappropriate processing, e.g., the reconstruction method
3. Non-continuous color and inappropriate plane of the image

display
4. Level of contrast and background subtraction
5. Partial volume effect on the corrected image

FDG PET

Biological factors Technical factors

1. Unintended brain activity from external stimuli
2. Interference effect on cerebral glucose metabolism, e.g., sedative

drug or high serum glucose level
3. Recent radio- or chemotherapy
4. Brain glucose metabolic alteration due to the aging process

1. Misregistration artifact
2. Inappropriate processing, e.g., reconstruction method
3. Non-continuous color and inappropriate plane of the image

display
4. Level of contrast and background subtraction
5. Partial volume effect on the corrected image

Amyloid and Tau PET

Biological factors Technical factors

1. Aging
2. Cortical atrophy
3. Encephalomalacia
4. Extracerebral activity
5. Non-specific uptake in the white matter and skull
6. Off-target binding of tau tracer

1. Partial volume artifact
2. Motion artifact
3. Low dose of tracer injection
4. Delayed scan time
5. Under-smooth reconstruction

8. Radiation Exposure Risk Concern and Management

In nuclear medicine imaging for dementia, managing radiation doses is essential,
especially in older patients. Although SPECT generates slightly more radiation than PET,
risks are minimal for a single scan but can accumulate with multiple imaging sessions.
PET, on the other hand, generally provides less radiation exposure than SPECT with more
detailed images. Thus, it is valuable in repeated imaging. To mitigate the risk, clinicians
should balance diagnostic needs with exposure risks. On the nuclear medicine side, it
is recommended to use minimum effective tracer doses and consider alternatives like
PET/MRI to reduce radiation further. Nuclear imaging radiation doses are generally low,
but optimizing protocols helps to minimize cumulative risk while providing essential
diagnostic insight.

9. Conclusions and Future Direction

The scope of applicability for these guidelines is aimed at hospitals with nuclear
medicine departments. Since SPECT is generally more accessible and cost-effective com-
pared to PET, SPECT can help to differentiate dementia subtypes (e.g., Alzheimer’s disease
vs. vascular dementia) using perfusion tracers. In complex cases in which the diagnosis
is still questionable, referring to higher-level centers with PET to perform specific tracers
for Alzheimer’s pathology, such as amyloid and tau imaging, is recommended for more
accurate dementia subtype differentiation. Tailoring the use of SPECT and PET in dementia
diagnosis based on the hospital level could ensure both cost-effectiveness and optimal
patient care across various healthcare settings.

In the near future, PET/MRI could become more prominent for their ability to simulta-
neously provide metabolic and structural insights. New tracers targeting amyloid, tau, and
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other proteins could allow for even earlier and more precise diagnosis. Machine learning
for SPECT and PET image analysis holds promise for improved accuracy in dementia
subtype differentiation and disease progression tracking.
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