A Step-by-step Guide: How to Calculate Fetus Dose? Manage Unsuspected Pregnancy during Radionuclide Therapy

Krisanat Chuamsaamarkkee Ph.D.

Division of Nuclear Medicine Department of Diagnostic and Therapeutic Radiology Faculty of Medicine Ramathibodi Hospital Mahidol University E-mail: <u>krisanat.ch@gmail.com</u>

Talk Outline

Introduction

- Why is important?
- RAI in Thyroid Disease
- Radiation Effects to fetus

02

RAI after Pregnancy***

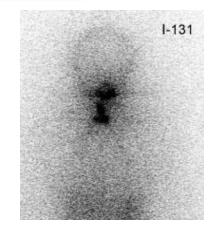
- How to estimate radiation dose?
- What information is needed?
- Fetal Hypothyroidism

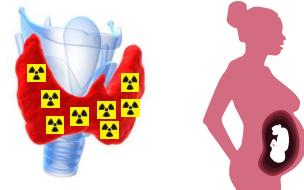
03 Pregnancy after RAI

- Fetus Absorbed Dose
- Recommendations

01

Breast Feeding during RAI


04


Radiodione (RAI) in Thyroid Diesease

 Radioactive iodine (¹³¹I) is widely used in the diagnosis and treatment of hyperthyroidism and thyroid cancer (since 1940s)

Dose Selection?

RAI	Activity		
Diagnostic	1 – 2 mCi		
Benign Thyroid Disease	5 – 30 mCi		
 Thyroid Malignant (ATA) Low-Risk Intermedia- High-Risks and Metastasis 	No RAI 30 mCi 150 – 200 mCi		

RAI in Pregnancy

- Administration of radiopharmaceuticals for therapeutic are generally contraindicated in pregnancy
 - Compulsory pregnancy test prior Tx
- If a pregnant woman is exposed to a radioactive substance, it may be absorbed into the bloodstream and pass through the placenta to the fetus (total ablation of fetal thyroid)
- In general, radiation effects are due to either cell killing or unrepaired DNA damage

Medical Exposure to Pregnant/Lactating Patient

Effects on the Embryo/Fetus

- 1. Pregnancy loss (abortion , stillbirths)
- 2. Congenital malformations (anatomical defects)
- 3. Neurobehavioral abnormalities (mental retardation)
- 4. Fetal growth retardation (reversible and irreversible)

5. Cancer

Stochastic

Deterministic

Z

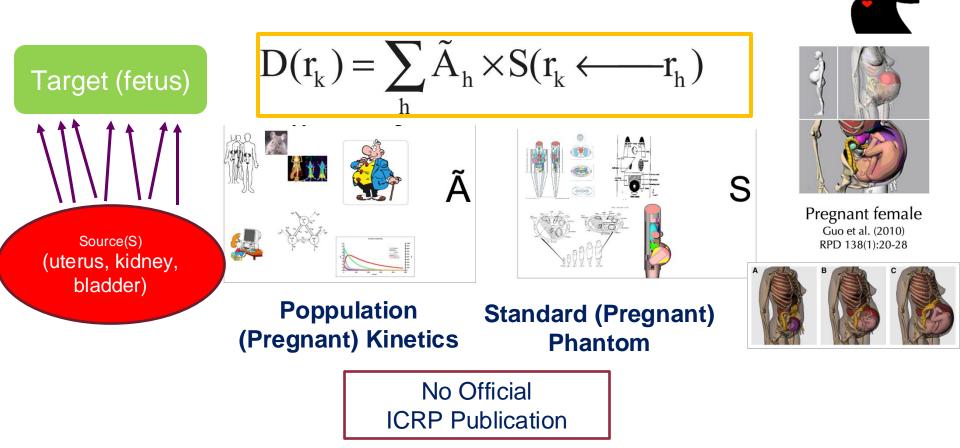
Effect and Risk of In-Utero Exposure

Gestation stage (days or weeks after conception)	Pre-implantation	Organogenesis	Fetal stages	<mark>100 - 300 mG</mark> y	/	Threshold doses for effects (mGy)	Spontaneous frequency (%)
(0–9 days	2-8 weeks	8-15 weeks	16-25 weeks	26 weeks-	······;	
Prenatal death	+++	+	_	_	_	100	30–60
Malformation	_	+++	-	_	_	100 100 mGy	6
Growth restriction	_	+	+	+	+	250	5–10
Mental retardation	_	_	+++	+	_	100-300	0.5
Hypothyroidism	_	_	+	+	+	100	0.03-0.05
Cancer	stia	+	+	+	+	0.06 % per 10 mGy	0.2-0.3
Hereditary effects Stochas	SLIC	_	_	-	-	1000-1500	10

European Journal of Obstetrics & Gynecology and Reproductive Biology 259 (2021) 53-59

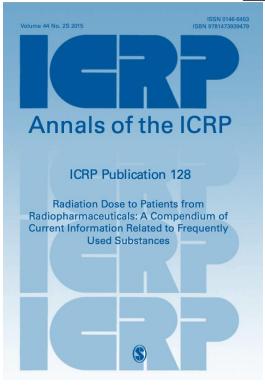
ACR/CDC Statement

- United States Nuclear Regulation Commission (USNRC) and ACR (American College of Radiology) also recommend total fetus radiation dose below 50 mGy is considered safe and does not cause any harm
- According to the Centers for Disease Control (CDC), radiation dose between 50 mGy - 100 mGy is regarded as inconclusive regarding impact on the fetus.



CENTERS FOR DISEASE CONTROL AND PREVENTION

Fetal Dose Calculation


ICRP 128 – Fetus Dose (Paragraph 68 - 69)

7. DOSE TO EMBRYO AND FETUS

(68) The absorbed dose to the uterus, which is included in the dose tabulations, may be used as a substitute for the absorbed dose to the embryo if the subject is in the first 2–3 months of pregnancy. Similarly, the absorbed dose to the fetus from radioactive substances without placental transfer is expected to be in the same range as the dose to the uterus. For radioactive substances with placental transfer, the absorbed dose to organs and tissues of the mother may, as a first approximation, be taken as representative of the absorbed dose to the corresponding organs and tissues of the fetus.

(69) More detailed radiation dose estimates for the fetus from administration of a number of radiopharmaceuticals to women at various stages of pregnancy are given by Russell et al. (1997). Their data illustrate that the majority of studies will probably involve fetal doses <10 mGy. Only studies using ¹³¹I-iodide, ²⁰¹Tl-chloride, and ⁶⁷Ga-citrate appear to result in fetal doses >10 mGy, according to present knowledge. Therapeutic administrations are routinely contra-indicated in the case of pregnancy or breast feeding as this may result in very high fetal doses. In addition, beyond 10–13 weeks of gestation, the fetal thyroid may receive extremely high doses in cases of therapy using ¹³¹I-iodide (Watson et al., 1989; Berg et al., 1998). For substances in their ionic form, a comprehensive compilation of doses to the embryo and fetus is found in *Publication 88* (ICRP, 2001).

Fetal Dose Calculation

Dose Coefficient (mGy/MBq)

Fetal Dose (mGy)

Gestation Week

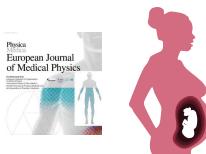
Original paper

Radiation dose and risks to fetus from nuclear medicine procedures

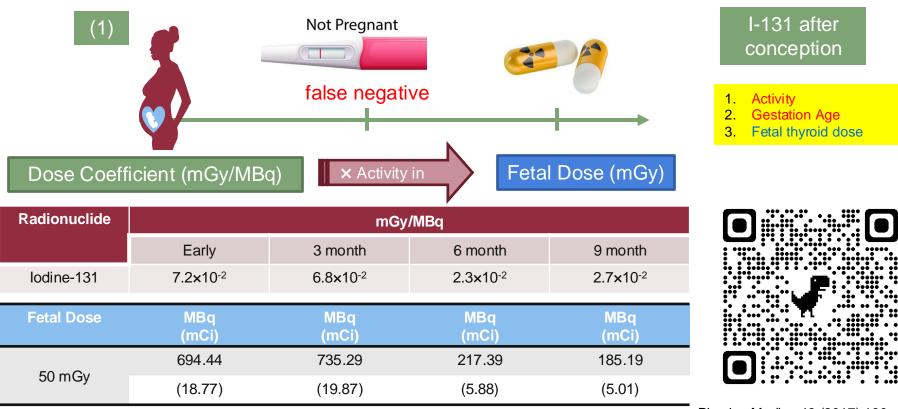
Michael G. Stabin*

Vanderbilt University, Nashville, TN, USA

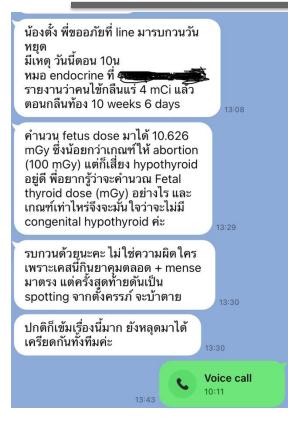
Table 4


Absorbed Dose Estimates to the Embryo/Fetus Per Unit Activity of Radiopharmaceutical Administered to the Mother (shading indicates maternal and fetal self dose contributions) (From Russell et al. [4]).

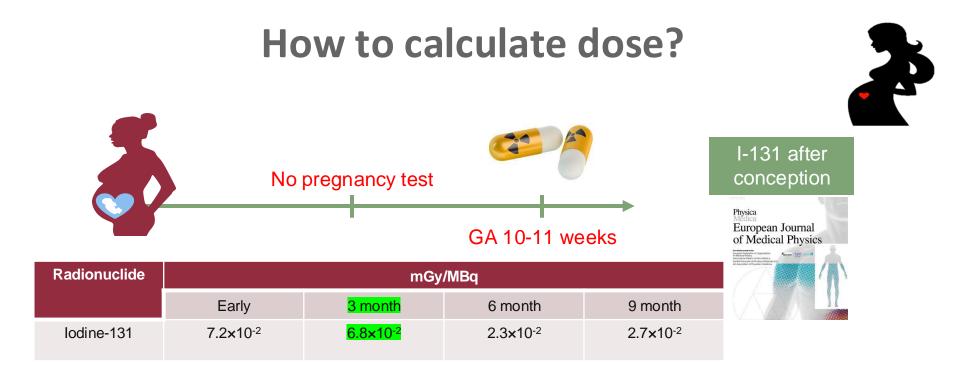
Radiopharmaceutical	Early mGy/MBq	3 Months mGy/MBq	6 Months mGy/MBq	9 Months mGy/MBq
⁵⁷ Co Vitamin B-1, Normal-Flushing ⁵⁷ Co Vitamin B-12, Normal-	1.0x10 ⁰	6.8x10 ⁻¹	8.4x10 ⁻¹	8.8x10 ⁻¹
No Flushing	1.5×10^{0}	1.0×10^{0}	1.2×10^{0}	1.3×10^{0}
⁵⁷ Co Vitamin B-12, PA- Flushing ⁵⁷ Co Vitamin B-12, PA-	2.1x10 ⁻¹	1.7×10^{-1}	1.7x10 ⁻¹	1.5x10 ⁻¹
No Flushing	2.8x10 ⁻¹	2.1x10 ⁻¹	2.2x10 ⁻¹	2.0x10 ⁻¹
⁵⁸ Co Vitamin B-12, Normal Flushing ⁵⁸ Co Vitamin B-12, Normal-	2.5×10^{0}	$1.9 x 10^{0}$	2.1x10 ⁰	2.1×10^{0}
No Flushing	3.7×10^{0}	2.8×10^{0}	3.1×10^{0}	3.1×10^{0}
58Co Vitamin B-12, PA-Flushing	8.3x10 ⁻¹	7.4x10 ⁻¹	6.4x10 ⁻¹	4.8x10 ⁻¹
58Co Vitamin B-12, PA-No Flushing	9.8x10 ⁻¹	8.5x10 ⁻¹	7.6x10 ⁻¹	6.0x10 ⁻¹
⁶⁰ Co Vitamin B-12, Normal Flushing ⁶⁰ Co Vitamin B-12, Normal-	3.7x10 ¹	$2.8 x 10^{1}$	3.1x10 ¹	3.2x10 ¹
No Flushing	5.5x10 ¹	4.2×10^{1}	4.7×10^{1}	4.7×10^{1}
⁶⁰ Co Vitamin B-12, PA-Flushing	5.9x10 ⁰	4.7×10^{0}	4.8×10^{0}	4.5x10 ⁰
60Co Vitamin B-12, PA-No Flushing	8.3x10 ⁰	6.5x10 ⁰	6.8×10^{0}	6.5x10 ⁰
¹⁸ F FDG	2.2x10 ⁻²	2.2x10 ⁻²	1.7x10 ⁻²	1.7x10 ⁻²
18 F Sodium Fluoride	2.2x10 ⁻²	1.7×10^{-2}	7.5x10 ⁻³	6.8x10 ⁻³
67Ga Citrate	9.3x10 ⁻²	2.0x10 ⁻¹	1.8x10 ⁻¹	1.3x10 ⁻¹
123I Hippuran	3.1x10 ⁻²	2.4x10 ⁻²	8.4x10 ⁻³	7.9x10 ⁻³
123I IMP	1.9x10 ⁻²	1.1x10 ⁻²	7.1x10 ⁻³	5.9x10 ⁻³
123I MIBG	1.8×10^{-2}	1.2×10^{-2}	6.8x10 ⁻³	6.2x10 ⁻³
1231 Sodium Iodide	2.0x10 ⁻²	1.4×10^{-2}	1.1x10 ⁻²	9.8x10 ⁻³
124I Sodium Iodide	1.4x10 ⁻¹	1.0x10 ⁻¹	5.9x10 ⁻²	4.6x10 ⁻²
¹²⁵ I HSA	2.5x10 ⁻¹	7.8x10 ⁻²	3.8x10 ⁻²	2.6x10 ⁻²
125 I IMP	3.2x10 ⁻²	1.3x10 ⁻²	4.8×10^{-3}	3.6x10 ⁻³
125I MIBG	2.6×10^{-2}	1.1x10 ⁻²	4.1×10^{-3}	3.4×10^{-3}
1251 Sodium Iodide	1.8x10 ⁻²	9.5x10 ⁻³	3.5x10 ⁻³	2.3×10^{-3}
126I Sodium Iodide	7.8x10 ⁻²	5.1x10 ⁻²	3.2x10 ⁻²	2.6x10 ⁻²
130I Sodium Iodide	1.8x10 ⁻¹	1.3x10 ⁻¹	7.6x10 ⁻²	5.7x10 ⁻²


¹³¹ I Hippuran	6.4x10 ⁻²	5.0x10 ⁻²	1.9x10 ⁻²	1.8x10 ⁻²
¹³¹ I HSA	5.2x10 ⁻¹	1.8×10^{-1}	1.6×10^{-1}	1.3x10 ⁻¹
¹³¹ I MAA	6.7x10 ⁻²	4.2x10 ⁻²	4.0x10 ⁻²	4.2x10 ⁻²
1 MIBG	1.1X10	5.4x10	3.8X10	3.5X10
¹³¹ I Sodium Iodide	7.2x10 ⁻²	6.8x10 ⁻²	2.3x10 ⁻¹	2.7x10 ⁻¹
131 Base Bangal	2.2-10-1	2.2~101	1.6~10	0.0-10-2
III In DTPA	6.5x10 ⁻²	4.8x10 ⁻²	2.0x10 ⁻²	1.8x10 ⁻²
¹¹¹ In Pentetreotide	8.2x10 ⁻²	6.0x10 ⁻²	3.5x10 ⁻²	3.1x10 ⁻²
III In Platelets	1.7×10^{-1}	1.1×10^{-1}	9.9x10 ⁻²	8.9x10 ⁻²
III In Red Blood Cells	2.2×10^{-1}	1.3×10^{-1}	1.1×10^{-1}	8.6x10 ⁻²
111 In White Blood Cells	1.3×10^{-1}	9.6x10 ⁻²	9.6x10 ⁻²	9.4×10^{-2}
99m Tc Albumin Microspheres	4.1×10^{-3}	3.0x10 ⁻³	2.5×10^{-3}	2.1×10^{-3}
99m Tc Disofenin	1.7x10 ⁻²	1.5x10 ⁻²	1.2×10^{-2}	6.7x10 ⁻³
99mTc DMSA	5.1x10 ⁻³	4.7x10 ⁻³	4.0x10 ⁻³	3.4x10 ⁻³
99mTc DTPA	1.2×10^{-2}	8.7x10 ⁻³	4.1×10^{-3}	4.7×10^{-3}
^{99m} Tc DTPA Aerosol	5.8x10 ⁻³	4.3×10^{-3}	2.3×10^{-3}	3.0x10 ⁻³
99mTc Glucoheptonate	1.2x10 ⁻²	1.1x10 ⁻²	5.3x10 ⁻³	4.6x10 ⁻³
99mTc HDP	5.2x10 ⁻³	5.4x10 ⁻³	3.0x10 ⁻³	2.5x10 ⁻³
^{99m} Tc HEDP	7.2x10 ⁻³	5.2x10 ⁻³	2.7x10 ⁻³	2.4x10 ⁻³
99mTc HMPAO	8.7x10 ⁻³	6.7x10 ⁻³	4.8x10 ⁻³	3.6x10 ⁻³
99m Tc Human Serum Albumin	5.1x10 ⁻³	3.0x10 ⁻³	2.6x10 ⁻³	2.2x10 ⁻³
^{99m} Tc MAA	2.8x10 ⁻³	4.0x10 ⁻³	5.0x10 ⁻³	4.0x10 ⁻³
^{99m} Tc MAG3	1.8x10 ⁻²	1.4x10 ⁻²	5.5x10 ⁻³	5.2x10 ⁻³
99mTc MDP	6.1x10 ⁻³	5.4x10 ⁻³	2.7x10-3	2.4x10 ⁻³
99mTc MIBI-rest	1.5x10 ⁻²	1.2x10 ⁻²	8.4x10 ⁻³	5.4x10 ⁻³
99mTc MIBI-stress	1.2×10^{-2}	9.5x10 ⁻³	6.9x10 ⁻³	4.4×10^{-3}
^{99m} Tc Pertechnetate	1.1x10 ⁻²	2.2x10 ⁻²	1.4x10 ⁻²	9.3x10 ⁻³
^{99m} Tc PYP	6.0x10 ⁻³	6.6x10 ⁻³	3.6x10 ⁻³	2.9x10 ⁻³
99mTc RBC-Heat Treated	1.7x10 ⁻³	1.6x10 ⁻³	2.1x10 ⁻³	2.2x10 ⁻³
99mTc RBC-in vitro	6.8x10 ⁻³	4.7x10 ⁻³	3.4x10-3	2.8x10 ⁻³
^{99m} Tc RBC-in vivo	6.4x10 ⁻³	4.3x10 ⁻³	3.3x10 ⁻³	2.7x10 ⁻³
99m Tc Sulfur Colloid-normal	1.8x10 ⁻³	2.1x10 ⁻³	3.2x10 ⁻³	3.7x10 ⁻³
99mTc Sulfur Colloid-Liver Disease	3.2x10 ⁻³	2.5x10 ⁻³	2.8x10 ⁻³	2.8x10 ⁻³
^{99m} Tc Teboroxime	8.9x10 ⁻³	7.1x10 ⁻³	5.8x10 ⁻³	3.7x10 ⁻³
^{99m} Tc Tetrofosmin	9.6x10 ⁻³	7.0x10 ⁻³	5.4x10 ⁻³	3.6x10 ⁻³

Physica Medica 43 (2017) 190–198



Iodine-131 after Conception


Physica Medica 43 (2017) 190–198

Case Example I

- Case from private hospital
- Hyperthyroid Patient, Contraception was confirmed by patient (birth control pill)
- Administered ¹³¹I activity 4 mCi
- After ¹³¹I, u/s was confirmed that on the treatment date GA around 10 - 11 Weeks
- Fetal Dose Calculation?

Original paper

Michael G. Stabin*

Vanderhilt University, Nashville, TN, USA

Radiation dose and risks to fetus from nuclear medicine procedures

- Fetal absorbed dose 10.06 mGy (use Stabin 2017, 3 month pregnant 6.8E-2 mGy/MBq)
- Below 50 mGy (ACR).....What else we need to concern?

Radiation Absorbed Dose for Fetal Thyroid

- The thyroid gland is the first endocrine organ to function during fetal life
- Thyroid organogenesis is largely completed by 10–12 weeks of gestation
- After the 10th week of gestation, the fetal thyroid gland starts trapping and concentrating iodine and synthesizing thyroid hormones

Dose to Fetal Thyroid per MBq of ¹³¹I administered to the mother

Gestational Age (mo)	I-123	I-124	I-125	I-131
3	2.7	24	290	230
4	2.6	27	240	260
5	6.4	76	280	580
6	6.4	100	210	550
7	4.1	96	160	390
8	4.0	110	150	350
9	2.9	99	120	270

Watson EE. 1992. Radiation absorbed dose to the human fetal thyroid

Watson Iodine Kinetic Model and Dose Estimation

Absorbed Dose to Fetal Thyroid per MBq of ¹³¹I administered to the mother

Estimated doses delivered to the whole body of the embryo/fetus and the fetal thyroid gland by radioactive iodine (¹³¹I) administered to the mother during various periods of pregnancy.

Gestational age	Estimated whole-body dose to the embryo/fetus (mGy/MBq)	Estimated fetal thyroid dose (mGy/MBq)
Early period	0.072	-
3 months	0.068	230
4 months	_	260
5 months	_	580
6 months	0.23	550
7 months	_	390
8 months	_	350
9 months	0.27	270

The estimated embryo/fetal absorbed doses are based on the methodology of Russell et al. [33], and fetal thyroid doses are based on the methodology of Watson [32]. Estimated doses delivered to the embryo/fetus or fetal thyroid are expressed in mGy per MBq administered to the mother.

Watson EE. 1992. Radiation absorbed dose to the human fetal thyroid

For ¹³¹

- Watson et al (1992) developed and summarised kinetic model for fetal dose in case of iodine administration to pregnant patient (No more recent data)
- Start uptake at Week 10th and Peak at 2nd Trimester
- Radioactive iodine can result in total ablation

Physica Medica 43 (2017) 190–198

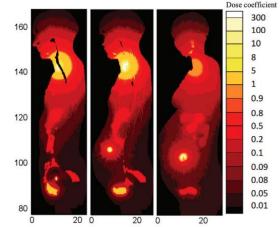
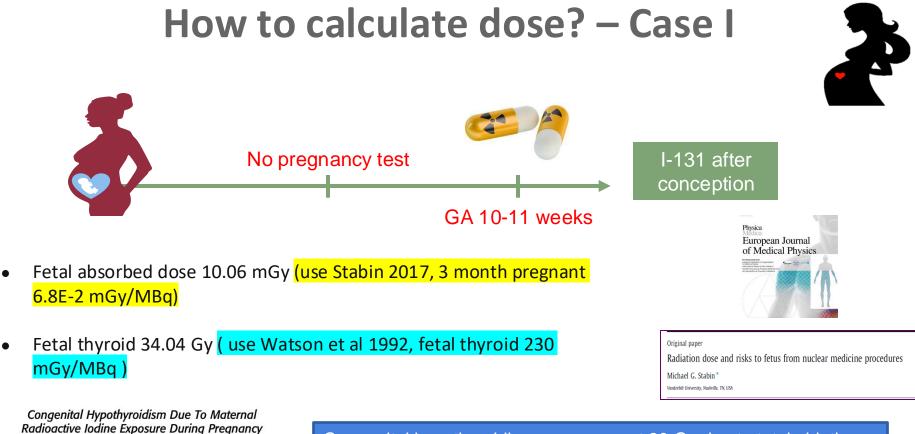



Figure 5. Distributions of dose coefficients $(mGy MBq^{-1})$ for thyroid scan with ¹³¹I in a sagittal view of 3, 6 and 9 month pregnant female phantoms.

Selim Kurtoglu¹2, Mustafa Ali Akan¹, Ghaniya Daar³, Leyla Akan², Seyma Memur¹, Levent Korkmaz¹, Osman Baştuğ¹, Selcan Yılımaz¹ ¹Ereiyes Usiveniy Faculty of Medicina, Department of Pediatric, Enkorion of Neoratology, Kayneri, Turkey ²Ereiyes Usiveniy Faculty of Medicina, Department of Pediatric Enkorsology, Kayneri, Turkey ³Evelowe University Faculty of Medicina, Department of Pediatric Reversit, Turkey ³Neopetri Coormonet Keipada, Department of Pediatric Reversit, Turkey Congenital hypothyroidism may occur at 30 Gy due to total ablation (fetal thyroid start uptake iodide at 10th -12th week of gestation

J Clin Res Pediatr En docrinol 2012;4(2):111-113

Fetal and Neonatal Hypothyroidism

- A few reports describing congenital hypothyroidism following maternal ¹³¹I therapy have been published
- If the embryo/fetus was received RAI at 8 10 weeks (before fetal thyroid organogenesis) and the exposure discovered within 12 h of ¹³¹I administration
- Giving the mother 60–130 mg of stable potassium iodide (KI) will partially block the fetal thyroid and reduce the thyroid dose

How to evaluate fetal thyroid function?

- Fetal blood samples are obtained by cordocentesis (invasive procedure can cause complications)
- การเจาะเลือดสายสะดือทารกในครรภ์ (cordocentesis) หมายถึง การดูดเก็บตัวอย่าง เลือดทารกในครรภ์จากสายสะดือโดยใช้เข็มเจาะผ่านทางหน้าท้องมารดา

Summary of known outcomes for fetuses and neonates born of mothers who were inadvertently exposed to radioactive iodine (¹³¹I) therapy during pregnancy.

Reference publication and year	Age of mother (years)	Maternal disease	Pregnancy test	¹³¹ I dose (MBq)	Gestational age at ¹³¹ I therapy	Estimated fetal ¹³¹ I dose (mGy)	Estimated fetal thyroid dose of ¹³¹ I (×1000 mGy)	Pregnancy outcome	Thyroid disease of the infant	Age at thyroid therapy	Other complications in the infant
Berg et al., 1998 [13]	43	Hyper	No	500	20 weeks	115	290	FD	Нуро	14 days	No
Berg et al., 2008 [14]	28	TC	No	3700	20 weeks	851	2035	MA	Нуро	_	Fetal hypothyroidism
Basbug et al., 2010 [15]	33	TC	No	185	16 weeks	12.6	48.1	PD	Нуро	_	Died soon after birth
Tran et al., 2010 [16]	UK	Hyper	No	732.6	8–10 days	52.8	NA	FD	Hyper	_	_
Kurtoğlu et al., 2012 [17]	UK	Hyper	No	740	12 weeks	50.3	170.2	FD	Нуро	15 days	UK
Sadakata et al., 2014 [18]	43	ТС	No	1850	5.5 weeks	133.2	NA	FD	No	_	No
Radacic-	22	Hyper	No	1369	3 weeks	2.7	NA	FD	No	_	No
Aumiler et al., 20 [19]	Radio	oactivity	doses of	550	•		ek are likely to g hypothyroidi		ablation	of the f	etal thyroid
Demir et a 2019 [20]					weeks		grijpodrijiolar				
2013 [20]	UK	Hyper	No	481	3 weeks	34.6	NA	FD	No	_	No
	UK	Hyper	No	3700	2.5 weeks	266.4	NA	MA	UK	_	UK
	UK	TC	No	5555	13 weeks	377.8	1278	MA	UK	—	UK

Fetal absorbed doses delivered by ¹³¹I administered to the mother were estimated using the methodology of Russell et al. [33], and fetal thyroid doses delivered by ¹³¹I administered to the mother were estimated using the methodology of Watson [32]. UK, unknown; Hyper, hyperthyroidism; TC, thyroid cancer; NA, not analyzed; Hypo, hypothyroidism; FD, full-term delivery; PD, preterm delivery; MA, medical abortion; DD, developmental delay; MR, mental retardation; SGA, small for gestational age.

European Journal of Obstetrics & Gynecology and Reproductive Biology 259 (2021) 53-59

Case Example II

27 มี.ค. 2024 09:27

สวัสดีค่ะอาจารย์ตั๋ง ขอ อนุญาต consult คำนวณ เคส กลืนแร่ Hyper : 30 mci ผ่านมา3เดือน เวียนหัว อาเจียน ตรวจครรภ์ พบว่า ตั้งครรภ์มา 12 สัปดาห์แล้ว ค่ะ

- Case from Cancer Hospital
- Hyperthyroid Patient 30 mCi on 2nd Jan 2024
- Serum HCG negative (On the Tx day)

- After ¹³¹I, u/s was confirmed that on the treatment date GA around 2-3 days
- What should we do?

How to calculate dose? I-131 after Serum HCG Physica conception European Journal negative of Medical Physics 2nd Jan 2024 Mar 2024 Radionuclide mGy/MBq Original paper Radiation dose and risks to fetus from nuclear medicine procedures Early 3 month 6 month 9 month Michael G. Stabin* Vanderbilt University, Nashville, TN, USA 7.2×10⁻² 2.3×10^{-2} lodine-131 6.8×10⁻² 2.7×10⁻²

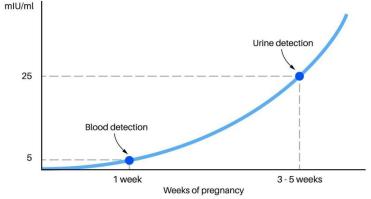
- Fetal absorbed dose 79.92 mGy (use Stabin 2017, 3 month pregnant 7.2E-2 mGy/MBq)
- Fetal Dose > 50 mGy
- Little is known about the effects of irradiation during the very early stages of pregnancy, from conception to implantation of the conceptus (the first 9–10 days)
- This effect is generally an "all-or-none" response: either embryo death or no detectable effects at all.

ACR Guideline for RAI in Pregnancy

ACR Practice Parameter for the Performance of Therapy With Unsealed Radiopharmaceutical Sources

Daniel E. Spratt, MD,* Bassem I. Zaki, MD,† Benjamin L. Franc, MD, MS, CPE,‡ Alan C. Hartford, MD, PhD, FACR,† and Joseph R. Osborne, MD, PhD§

A patient should not be pregnant at the time of


radiopharmaceutical administration

Pregnancy should be excluded prior to RP

administration by one of the following:

- Negative human chorionic gonadotropin (hCG) test serum or urine
- Documented hysterectomy
- Postmenopausal state (absence of menstrual bleeding for 2 years), or pre-menstrual age (<10 years or younger)
- A 2-week contraception (using condom) should be recommended to female patients before RAI

- Serum HCG may falsely negative 7-8 days after contraception
- Urine HCG may falsely negative ~ 3 5 weeks

https://www.narayanahealth.org/ml/blog/pregnancy-testwhen-to-take-types-accuracy

01

Talk Outline

Introduction

- Why is important?
- RAI in Thyroid Disease
- Radiation Effects to fetus

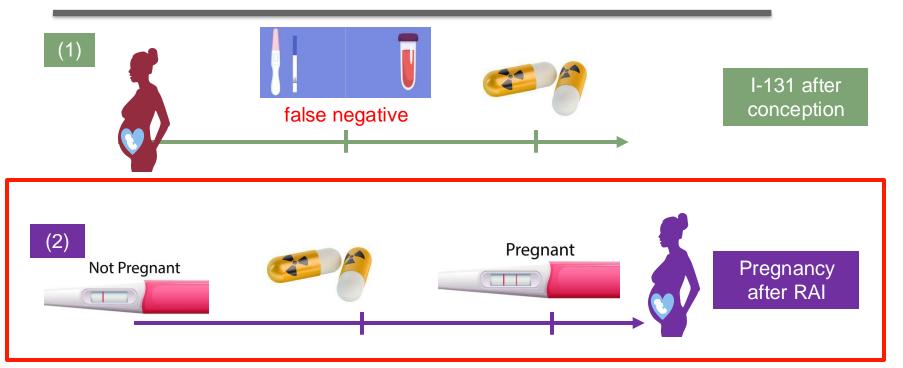
02

RAI after Pregnancy***

- How to estimate radiation dose?
- What information is needed?
- Fetal Hypothyroidism

03 Pregnancy after RAI

- Fetus Absorbed Dose
- Recommendations


Breast Feeding during RAI

05 Summary

04

Pregnancy after RAI

Birth Control for 6 months for female after RAI \rightarrow If pregnant

Pregnancy after RAI

Original paper

Radiation dose and risks to fetus from nuclear medicine procedures

Michael G. Stabin*

Vanderbilt University, Nashville, TN, USA

Table 6

Fetal dose estimates for hyperthyroid and euthyroid patients. in the case in which conception occurs after administration of Na¹³¹I. Absorbed Dose to Fetus in Cases of Hyperthyroidism (mGy/MBq).

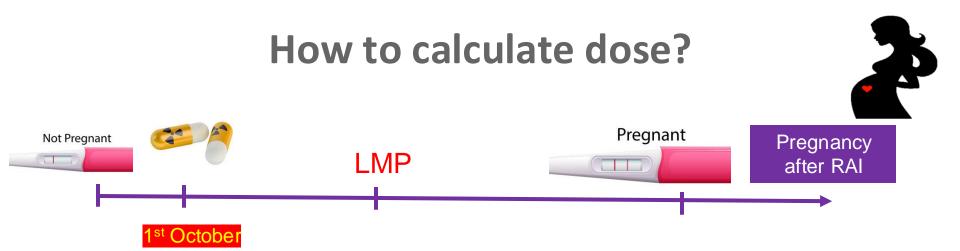
Maximum	Time in Week	s After Administrat	ion That Conception	n Occurs				
% Uptake	1	2	3	4	5	6	7	8
5%	4.1E-04	1.9E-04	8.7E-05	4.0E-05	1.9E-05	8.7E-06	4.0E-06	1.9E-0
10%	8.3E-04	3.8E-04	1.7E-04	8.0E-05	3.7E-05	1.7E-05	7.8E-06	3.6E-0
15%	1.3E-03	5.8E-04	2.6E-04	1.2E-04	5.5E-05	2.5E-05	1.1E-05	5.2E-0
20%	1.7E-03	7.8E-04	3.5E-04	1.6E-04	7.2E-05	3.3E-05	1.5E-05	6.7E-
25%	2.2E-03	9.8E-04	4.4E-04	2.0E-04	8.8E-05	4.0E-05	1.8E-05	8.0E-
30%	2.7E-03	1.2E-03	5.3E-04	2.3E-04	1.0E-04	4.6E-05	2.0E-05	9.1E-
35%	3.2E-03	1.4E-03	6.1E-04	2.7E-04	1.2E-04	5.2E-05	2.3E-05	1.0E-
40%	3.7E-03	1.6E-03	7.0E-04	3.0E-04	1.3E-04	5.7E-05	2.4E-05	1.1E-
45%	4.3E-03	1.8E-03	7.8E-04	3.3E-04	1.4E-04	6.0E-05	2.6E-05	1.1E-
50%	4.8E-03	2.0E-03	8.5E-04	3.6E-04	1.5E-04	6.3E-05	2.6E-05	1.1E-
55%	5.4E-03	2.2E-03	9.2E-04	3.8E-04	1.6E-04	6.4E-05	2.7E-05	1.1E-
60%	6.0E-03	2.4E-03	9.8E-04	4.0E-04	1.6E-04	6.4E-05	2.6E-05	1.0E-
65%	6.7E-03	2.6E-03	1.0E-03	4.0E-04	1.6E-04	6.2E-05	2.5E-05	9.7E-
70%	7.3E-03	2.8E-03	1.1E-03	4.1E-04	1.5E-04	5.9E-05	2.2E-05	8.6E-
75%	7.9E-03	2.9E-03	1.1E-03	4.0E-04	1.5E-04	5.4E-05	2.0E-05	7.2E-
80%	8.5E-03	3.0E-03	1.1E-03	3.7E-04	1.3E-04	4.6E-05	1.6E-05	5.7E-
85%	9.1E-03	3.0E-03	1.0E-03	3.4E-04	1.1E-04	3.8E-05	1.3E-05	4.2E-
90%	9.6E-03	3.0E-03	9.2E-04	2.9E-04	8.9E-05	2.8E-05	8.6E-06	2.7E-
95%	9.8E-03	2.8E-03	7.9E-04	2.2E-04	6.3E-05	1.8E-05	5.1E-06	1.4E-
100%	9.8E-03	2.4E-03	6.1E-04	1.5E-04	3.8E-05	9.3E-06	2.3E-06	5.8E-

Absorbed Dose to Fetus in Euthyroid Cases (mGy/MBq)

Maximum	Time in Weeks After Administration That Conception Occurs							
% Uptake	1	2	3	4	5	6	7	8
5%	3.1E-04	1.5E-04	7.7E-05	3.8E-05	1.9E-05	9.5E-06	4.7E-06	2.4E-06
15%	8.8E-04	4.4E-04	2.2E-04	1.1E-04	5.6E-05	2.8E-05	1.4E-05	7.2E-06
25%	1.4E-03	7.1E-04	3.6E-04	1.8E-04	9.2E-05	4.7E-05	2.4E-05	1.2E-05

Pregnancy after RAI

- 1. Hyperthyroid -Euthyroid
- 2. Maximum uptake
- 3. Activity
- 4. Time in weeks after administration that conception occurs


Case Example III

Radionuclide Rx (9) < 75 ประชมทั้งอาทิตย์เลยค้ำาา Fri, November 30, 2561 Tunk ตั้งคะ พอดีมีคนไข้กลืน แร่ 10 mCi ไปวันที่ 1 ตค แล้ว ตั้งครรภ์หลังจากนั้น ประจำ เดือนครั้งสุดท้ายวันที่ 27 ตค ตอนก่อนกลืนแร่ตรวจปัสสาวะ แล้วยังไม่ตั้งครรภ์ค่ะ จะขอรบ กวนตั้งช่วยคำนวณ dose ที่ เด็กจะได้รับได้ไหมคะ ถ้านับ จากวันกลืนแร่ถึงประจำเดือน ครั้งสดท้ายห่างกัน 3 อาทิตย์ 5วันค่ะ

- Hyperthyroid patient received ¹³¹I 10 mCi on 1st October
- LMP 27th October
- Known pregnant on 30th
 November (urine test)

• Worse case scenario - Conception might occur 26 days after

administration (use 3 weeks for calculation)

- Review chart 67% uptake (use 70% uptake for calculation)
- From table, 1.1E-3 mGy/MBq and 10 mCi (370 MBq)
- Fetal absorbed dose 0.41 mGy

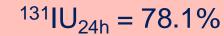
Case Example IV

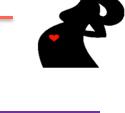
- Hyperthyroid Patient plan for radioiodine
- 10th Jan 2023 LMP, Urine HCG –ve

CrossMark

- 17th Jan 2023 ¹³¹ 15 mCi
- 21st Feb 2023 Urine HCG +ve

 $^{131}\text{IU}_{24h} = 17.72 \times \ln(99\text{mTcU}_{20\text{min}}) + 30.485$


whereas if TRAb > 10 IU/ml:


 131 IU_{24h} = 18.03 × ln(99mTcU_{20min}) + 38.726

Endocrine (2016) 54-751-756 DOI 10.1007/s12020-016-1074-

Calculation of therapeutic activity of radioiodine in Graves' disease by means of Marinelli's formula, using technetium (99mTc) scintigraphy

Piotr Szumowski¹ · Małgorzata Mojsak¹ · Saeid Abdelrazek¹ · Monika Sykała¹ Anna Amelian-Filonowicz¹ · Dorota Jurgilewicz¹ · Janusz Myśliwiec

Pregnancy after RAI

- Hyperthyroid Euthyroid
- Maximum uptake 2.
- 3. Activity
 - Time in weeks after administration that conception occurs

Endocrine (2016) 54:751-756

How to Calculate?

Original paper

Radiation dose and risks to fetus from nuclear medicine procedures

Michael G. Stabin*

Vanderbilt University, Nashville, TN, USA

Table 6

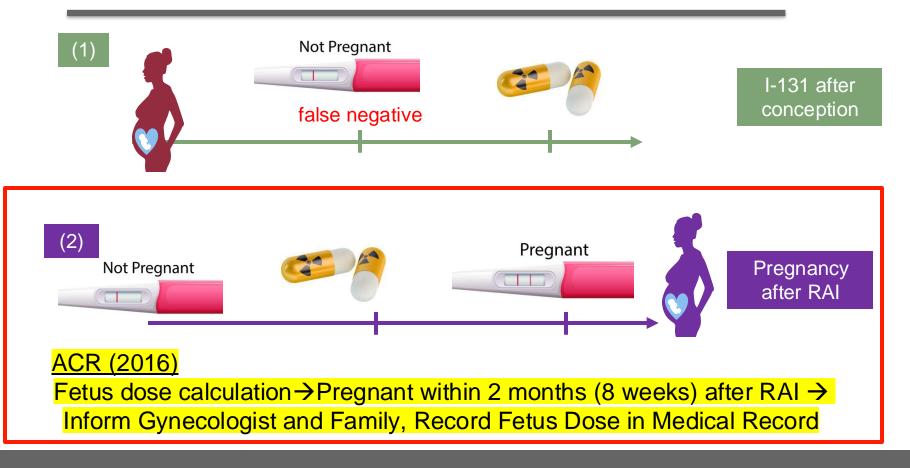
Fetal dose estimates for hyperthyroid and euthyroid patients, in the case in which conception occu Hyperthyroidism (mGy/MBq).

Maximum	Time in Weel	s After Administrat	ion That Conception	n Occurs
% Uptake	1	2	3	4
5%	4.1E-04	1.9E-04	8.7E-05	4.0E-05
10%	8.3E-04	3.8E-04	1.7E-04	8.0E-05
15%	1.3E-03	5.8E-04	2.6E-04	1.2E-04
20%	1.7E-03	7.8E-04	3.5E-04	1.6E-04
25%	2.2E-03	9.8E-04	4.4E-04	2.0E-04
30%	2.7E-03	1.2E-03	5.3E-04	2.3E-04
35%	3.2E-03	1.4E-03	6.1E-04	2.7E-04
40%	3.7E-03	1.6E-03	7.0E-04	3.0E-04
45%	4.3E-03	1.8E-03	7.8E-04	3.3E-04
50%	4.8E-03	2.0E-03	8.5E-04	3.6E-04
55%	5.4E-03	2.2E-03	9.2E-04	3.8E-04
60%	6.0E-03	2.4E-03	9.8E-04	4.0E-04
65%	6.7E-03	2.6E-03	1.0E-03	4.0E-04
70%	7.3E-03	2.8E-03	1.1E-03	4.1E-04
75%	7.9E-03	2.9E-03	1.1E-03	4.0E-04
80%	8.5E-03	3.0E-03	1.1E-03	3.7E-04
85%	9.1E-03	3.0E-03	1.0E-03	3.4E-04
90%	9.6E-03	3.0E-03	9.2E-04	2.9E-04
95%	9.8E-03	2.8E-03	7.9E-04	2.2E-04
100%	9.8E-03	2.4E-03	6.1E-04	1.5E-04

- UPT might positve 10 -14 days after conception
 - 17th Jan 2023 ¹³¹I 15 mCi

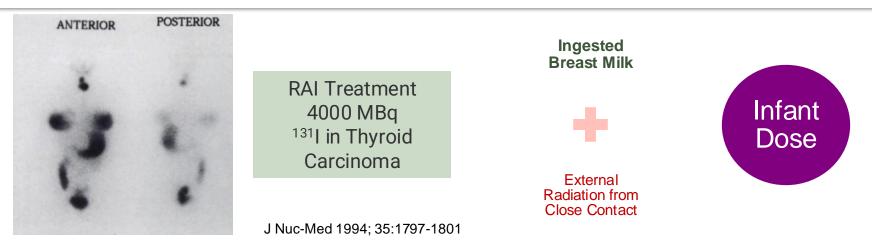
4 wk

- 21st Feb 2023 UPT +ve
- Calculate 2 4 weeks after administration


2 weeks after conception (error from urine test)

• 15 mCi * 37 MBq/mCi * 3.0E-3 mGy/MBq = 1.67 mGy

4 weeks after conception


• 15 mCi * 37 MBq/mCi * 3.73E-3 mGy/MBq = 2.07 mGy

Recommendation for Pregnancy after RAI

Breast Feeding

- ð
- During pregnancy, there is a substantial increase in the mammary epithelial population to prepare for lactation
- In this situation, <u>the mammary epithelial tissues can receive a significant radiation</u> <u>dose</u>.
- The mammary gland binds and concentrates the ¹³¹I and transfers it to the breast milk.

Academy of Breastfeeding Medicine 2019

R

TABLE 1. COMMON NUCLEAR MEDICINE IMAGING AGENTS AND RECOMMENDATIONS FOR BREASTFEEDING

Imaging agent	Breastfeeding interruption	
Noncontrast radiographs Nonvascular administration of iodinated contrast CT with iodinated intravenous contrast MRI with gadolinium-based intravenous contrast Nuclear medicine imaging PET	No No No No	_
Bone scan Thyroid imaging I-131 I-123 Technetium-99m pertechnetate Renal imaging	No Cessation for this infant Recommendations vary, up to 3 weeks Up to 24 hours, depending on dose	^s ¹³¹ I – Stop breastfeeding
Tc-99m DTPA Tc-99m MAG3 Tc-99m DMSA Tc-99m glucoheptonate	No ^a No ^a No ^a No ^a	ICRP Publication 94 (2004) -
Cardiac imaging Tc-99m Sestamibi Tc-99m Tetrofosmin	No ^a No ^a	A guideline recommends that patients should avoid
MUGA Tc-99m RBCs in vitro Tc-99m RBCs in vivo VO scan	No ^a Up to 12 hours, depending on dose	breastfeeding for 6–12
Tc-99m MAA Breast imaging	12 hours	months after radiotherapy
Screening or diagnostic mammography Ultrasound MRI with gadolinium-based intravenous contrast	No No No	

^aThe International Atomic Energy Administration recommends withholding breastfeeding for 4 hours or one feeding to account for any external radiation and free Tc99m pertechnetate in the product.

CT, computed tomography; MRI, magnetic resonance imaging; MUGA, multigated acquisition scan; Tc-99m MAA, technetium-99m macroaggregated albumin; PET, positron emission tomography; Tc-99m MAG3, technetium-99m mertiatide; Tc-99m DMSA, technetium-99m succimer; VQ, ventilation-perfusion.

Summary and Take-Home Messages

- Radiation-induced effects on the embryo/fetus are highly dependent on the stage of pregnancy, the dose absorbed by the embryo/fetus
- How to estimate radiation dose? (> 50 mGy should be worried)
 ✓ Dose Coefficient Table from Publications (Stabin 2017)

Congenital Hypothyroidism – if RAI after the 10th Week of Gestation

